Lipschitz extensions and Lipschitz retractions in metric spaces
نویسندگان
چکیده
منابع مشابه
Spaces of Lipschitz Functions on Metric Spaces
In this paper the universal properties of spaces of Lipschitz functions, defined over metric spaces, are investigated.
متن کاملInfinitesimally Lipschitz Functions on Metric Spaces
For a metric space X, we study the space D∞(X) of bounded functions on X whose infinitesimal Lipschitz constant is uniformly bounded. D ∞(X) is compared with the space LIP∞(X) of bounded Lipschitz functions on X, in terms of different properties regarding the geometry of X. We also obtain a Banach-Stone theorem in this context. In the case of a metric measure space, we also compare D∞(X) with t...
متن کاملLipschitz and Path Isometric Embeddings of Metric Spaces
We prove that each sub-Riemannian manifold can be embedded in some Euclidean space preserving the length of all the curves in the manifold. The result is an extension of Nash C Embedding Theorem. For more general metric spaces the same result is false, e.g., for Finsler non-Riemannian manifolds. However, we also show that any metric space of finite Hausdorff dimension can be embedded in some Eu...
متن کاملHausdorff Dimension of Metric Spaces and Lipschitz Maps onto Cubes
We prove that a compact metric space (or more generally an analytic subset of a complete separable metric space) of Hausdorff dimension bigger than k can be always mapped onto a k-dimensional cube by a Lipschitz map. We also show that this does not hold for arbitrary separable metric spaces. As an application we essentially answer a question of Urbański by showing that the transfinite Hausdorff...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Colloquium Mathematicum
سال: 1981
ISSN: 0010-1354,1730-6302
DOI: 10.4064/cm-45-2-245-250